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Abstract. We derive an exact solution for the evolution of a one-dimensional ensemble of 
Rayleigh test particles at unit mass ratio (y = 1) in the presence of a speed absorbing barrier. 

The result, which entails an Arrhenius-law dependence of mean first-passage time on 
barrier height, appears to be a hitherto unique example of a singular passage-time problem 
exactly soluble through a continuous spectrum of eigenvalues and their associated eigen- 
distributions. 

inourearlier papers in this series (Hoare and Rahman 1973,1974, to be referred to as I 
and 11 respectively) we developed a qualitative treatment of the spectral Properties of 
k Rayleigh one-dimensional gas and obtained an exact solution of the singular 
yenvalue problem for the relaxation modes in the special case of unit test 
@cle/heat bath mass ratio. This led to a simple closed form for the evolution of the 
Wd distribution function, though the behaviour of the more interesting velocity 
&bution remained very complicated. 

Wenow turn to an aspect of the Rayleigh problem which, so far as we are aware, has 
W b e e n  considered either in this model or in any comparable formulation of particle 
@WM theory. This concerns the evolution of a system of Rayleigh test particles in 
thepresence of an absorbing barrier representing the physical removal of those particles 
rFh reach some critical threshold in speed or energy. Such a situation seems not 
k lhJ t  practical importance-one can envisage both experimental and astrophysical 
‘Qditions under which particles might be removed to some null state by chemical, or 
Q@ivably nuclear, reaction at a certain activation barrier and thereafter play no 

Part in the process. The instantaneous initiation of the process is less easily 
&edfor, but might nevertheless be achieved by sudden irradiation or exposure to a 
hk front. 

AQsiderable literature deals with this type of system in the much simpler case, 
groPnate only to internal degrees of freedom, where the interaction with a heat bath 
‘Specified in terms of a mean collision number and the reaction process can be 
considered in terms of discrete ‘relaxation times’ (Montroll and Shuler 1958, Widom 
1ps93HOare 1964, Oppenheim et a1 1967). In these studies particular attention is paid 
btPqdePendence of overall rate of reaction (absorption) upon both barrier energy and 
‘‘Mtlaldistribution of reactant particles, and it is a notable feature of all models so far 
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treated that the existence of a characteristic first-order rate constant with exponenu 
dependence on barrier height (the Arrhenius law) can only be justified asymptotiq 
for limitingly high barrier energy. When, as here, reaction is required to depend on& 
translational degree of freedom, the occurrence of singular solutions and a mntinm 
distribution of relaxation times rules out the simple treatment previously applied 
though similar questions to those above remain of interest in the resulting, 
complicated, mathematical picture. 

The present work appears to be the first to examine these problems-in pNi* 
the status of the Arrhenius law-in relation to a singular kinetic process with a b  
tion. While the one-dimensional Rayleigh model can hardly be expected to provide 
direct predictions relevant to actual reactions, for example in a three-dimensionals& 
front, it may nevertheless be offered as an idealized case of exceptional interestwhjca 
can throw light on the mathematics of more realistic systems. 

2. The transport equation 

For physical and mathematical background to the Rayleigh piston model we refer to1 
and 11. Once again we restrict attention to the special case (y = 1) in which labelledtest 
particles collide with a one-dimensional heat bath of particles of identical mass, ad 
consider the half-range initial-value problem for the evolution of a speed distributioo 
function P ( l x 1 , ~ )  given a specified P(lx1,O). Let there now be introduced an absohg 
barrier at some speed x t  such that particles once exceeding this ‘react’ and are removed 
from the system. Using the transition probabilities treated earlier (equations (5.5) ad 
(5.6) of II), the transport equation to be satisfied by a time-dependent distributiw 
P ( l x 1 , ~ )  is easily seen to bet 

in which the collision number function z(x) is 

z(x) =e-’’+ n-1’2x erf(x). (?.I 

z(0) = 1, 

Here max(x, y)  represents the value of the larger of the two arguments. We recall that 

z’(x) = T”’ erf(x), z’‘(x) = 2 e+. 

As we showed previously (11, equation (9.1)) the ‘fundamental’ solution of &t 
unperturbed relaxation problem (x’ = CO) corresponding to the initial condibm 
P(x,  0) = 6(x -xo) can be written in the form 

~ ( x ,  7 )  = 2p-”’ e-’‘ + 6(x - xo) e-z(xo)r - 27 e-x2 e - Z ( Y ) T  dy; T>O. (23) 

In fact the general solution for arbitrary normalized initial condition P(x,  0) can ’ 
obtained by a similar method, or equally well by superposition of the solutions @’’. 
i Throughout this paper x is the reduced velocity x = ( M / 2 k , n 1 ” V ,  where M, T, V are the commond 
particle and heat bath mass, heat bath temperature and test particle velocity mpedi’~. 

modulus notation from 1x1 in what follows on the understanding that all expressions refer Strictl~ro* 
half-range Osxsx’ with X+<CO. 

7 =  na(2kBT/rrM)”’t with n. U test particle number density and collision cross section. We shalld@ rbr 
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m,objective in this paper is to derive a similar expression for the perturbed 
MlUtion P(x, x', 7) in the presence of an absorbing barrier at speed xt. This must 
d n t l y  express the loss of conservation of probability over the finite range (0, x ' )  

a modification of the persistent, Maxwellian term in the above equations. 

1 eigenvalue problem 

ming our previous development of the solution of (2.4) we m,ay expect the 
weddistribution function P(x, x t ,  7) solving equation (2.1) to be expressible as a 
mbination of terms of the form 

P(x,xt, 7)-exp[-A(x')7-x2]f(x, x', A )  (3.1) 

isberef(x, xt, A )  is to be determined by solution of the singular integral equation 

ahugh in outline the solution of this may be expected to parallel that for the simple 
xlaxation problem, to which it reduces for x' = 00, the presence of the absorbing barrier 
inmcating the kernel introduces new boundary conditions which must perturb the 
doleeigenvalue spectrum. There are two distinct consequences. First the equilibrium 
eigenvalue ho = 0 of the simple relaxation operator will be perturbed to a finite value, 
thus removing the persistent term in the solution; secondly the restriction of the 
@pnent to the interval O s  x < xt reduces the previously infinite range of the continu- 
mspectrum to the finite region 1 < A  < z(xt) for which the singular factor [z(x)-A] 

vanish (figure 1). We must also allow for the fact that the presence of the barrier 
might induce new discrete lines in the previously empty discretum region 0 < A < 1. 

As before we first examine the possibility of solutions to (3.2) in the region of 
heteeigenvalues O <  A < 1. The general form of these is evidently unchanged by the 
andition x t  Z 00 since we may differentiate twice and obtain the singular differential 
quation 

(d2/dx2){[~(x)-A]1f(x, xt, A)}= 2e-x2f(~,  x', A )  (3.3) 
"'tially as before. We note likewise that the condition z"(x) = 2e-" ensures that one 
!lution of the above shall be of the form f o =  constant, with the corresponding 
'ge"valueAo to be fixed in terms of X' through equation (3.2). A second solution may 
then be determined as 

the general solution will take the form of a linear combination 

'(3.5) 
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F i  1. Eigenvalue spectrum related to barrier height for the Rayleigh sea- 
operator truncated at  an absorbing barrier (y = l). ( a )  Spectrum f:r unperturbed rei- 
(xi = a); (6) intermediate case; (c) spectrum for limiting region x << 1. Note how t h e e  
discrete eigenvalue ho is perturbed from its zero value by the introduction of the &, 
while the continuum is reduced to a finite range bounded above at A'= z(x'). & 
continuum threshold remains at r(0) and thus the whole continuum and the singled& 
line coalesce at the point A = z(0) as xt+O (schematic only). 

with two constants dependent on the barrier height x t .  The integralis of course regular 
since we have restricted attention to the region 0 6 A < 1. One of the constants will later 
be fixed by a normalization; to determine the second we substitute (3.5) back intotbe 
original integral equation (3.2) and obtain, after some partial integrations, thecondition 

-u(xt, A )  = a(xt,  A)[xtz ' (xt)-z(xt)]  + b(x', A )  [xiz'(x')R(xt, A)-z (x ' )R(x ,  A) 

X t  
+AR(x', A ) +  

Inspection shows that this can only be satisfied by forcing 

b = O ;  A o ( x t )  = z (x~) -x ' z ' (x ' )  (3.9) 

with the constant a remaining arbitrary. Using now the derivative z'(x) = v1"erf(I) 
from (2.2) the single discrete eigenvalue is revealed to be 

A"(x+) (3.81 

The rest of the discretum must be empty as in the unperturbed relaxation, confirming 
that no new eigenvalues are induced by the absorbing barrier. 

The continuum region A > I  may now be considered. Following our Previous 
solution for the unperturbed relaxation (11, equation (4.4)) we may expect the singular 
'eigendistributions' of the operator in equation (3.2) to be expressible in the form 

f(x, x', A )  = 

where R now stands for the pseudofunction Pf . R(x,  A )  corresponding to the integralof 
equation (3.41, x A  is the root of z(xA)-A =0, and the constants appearing are,' 
functions of A. However, knowing that the present half-range problem requrres 
solutions Of euen symmetry, we may reject the terms in R(x, A )  and by substitutionback 

t 

t (3.9) I ~ [ ~ ( x ) - A ] + B I + C , R ( X , A ) ;  o< X A  6 x < x 
o G X < X A < X  
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*(3,2) establish in addition that B,  = 0. At the same time the constants AI and A2 

A,(A) = -A,(A) e-x:/z'(x,)2. (3.10) 

be required singular solutions (eigendistributions) can be written in terms of the 
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e to be related by the condition P 

normalization function A(A) 

hequantity xf does not appear explicitly in the functions on the right we retain it 
argument to emphasize that it imposes a domain (0, x') on the new functions 

Theorthogonality of the above functions to the Maxwellian is readily confirmed, as 
f(rr) in contrast to the domain (0, Q3) in the simple relaxation case. 

btbeorthogonality with respect to each other: 

, .. 
Bus we may work with the orthonormal set 

(3.12) 

(3.13) 

Tbeconditions on the right are, of course, equivalent to the restriction 1 S h < z(xt>. 
W e a n  now discern the full nature of the spectrum in the presence of the absorbing 

barrier.Since, as xi + 0, Ao(x') +. r(0) = 1, we see that the single discrete line approaches 
hhemntinuum threshold as the barrier height x' is reduced, while at the same time the 
mntinuum itself is compressed into a narrowing region which eventually coalesces with 
hdixrete line at A = 1 (figure 1). This corresponds to the unrealistic limiting case 
d m  only those test particles of virtually zero velocity are considered and these are 
removed with a single time constant equal to their inverse collision number. 

ne 5tial-value problem 

the solution of stochastic problems with absorption is considerably more 
Piffidtthan in the case of simple relaxation and we may-have to be content with lesser 
lnfomatiOn than the full time-dependent distribution function. Weaker alternatives 
are to seek the passage-time distribution for absorption, or its moment generating 
h f i o k o r  in the simplest resort, the mean first-passage time to the absorbing barrier. 
NevefieleSs, in our present case, in which the absorbing threshold xt does not appear 
'ThcitlY in the eigenfunctions, it proves possible to obtain the full distribution function 
p(kx' tT)  itself as well as the reduced quantities. 

Toderive this we write a spectral expansion in the form 
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and, entering the eigenfunctions (3.13) obtain, for 7 = 0 

p(x,x+, 0 ) = a ~ ~ e - ’ * + a ( x ) z ’ ( x ) ~ - 2 e  - I z  jxx’ ~(XA)Z’(XA)+(X, XA)dXA. (4.3 

Differentiation with respect to x leads to a first-order differential equation for& 
function a(x), for which the integratingfactor is seen to be z’(x) exp(x2), and th i s inh  
leads to the solution 

with /3 a constant of integration. Substitution back into equation (4.3) exposes the 
connection 

/3 = 2 I ” [P(x, xi, 0) -ao e-”] dx. 
0 

Two conditions now suffice to determine P and a”. We impose the normalization 

jos‘ P(x,  xt, 0) dx = 1 

and require that a(h)  is identically zero when P(x, x’, 0) is the Maxwellian normalind 
on (0, x’). This leads to the combination 

p=o ;  a() = 2/Z’(X+). (1.61 

We note that equation (4.3) amounts to a constructive proof of the completenessoftk 
set (3.13) with respect to all functions simply integrable on (0, xt). 

The solution of the initial-value problem for any probability distribution P(x.x’.OI 
may now be composed. Substituting the expression (4.3) for a ( h )  back into (4 . l )we 
obtain, after some manipulation 

Results for a variety of special cases follow immediately from this expression. US@ 
as necessary, the limiting values of the collision-number function: 

z(0) = 1 ; Z(o0) =CO; z’(0) = 0; z’(o0) = 71”’ 

we notice the following. 
(i) For any initial condition normalizable by (4.5) we have 

explicitly. 
(ii) For long times 
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($1 For limiting IOW barrier height xt<< 1, absorption occurs at first collision and 

P(X, x', T )  = P(X, xt, 0) e-'? 

[ j )  For limiting high barrier xt+W the simple relaxation solution (2.4) is re- 

(v) For the 'fundamental' initial condition P(x, xi, 0) = S(x -xo), the solution 
covered. 

reduces to 

which in turn gives the result (2.3) when xi+ CO. 

(vi) For an initial Maxwellian distribution at the heat-bath temperature, ie when the 
absorbing barrier is instantaneously 'switched on', there is cancellation of terms 
with the simple result that 

R&& computed from equation (4.8) with a number of different initial Conditions 
and barrier heights are illustrated in figwe 2. 

The general content of the exact solution (4.7) is readily perceived. Evidently the 
subset of test particles which have experienced no collision up to time T decays as a 
~osso? process with time constant z(x)-', this being the mean waiting time to collision 
at speed x. A complicated transient behaviour accompanies this with test particles 
taking up the Maxwellian distribution in competition with passage over the barrier. If 
the barrier height is very low, the integral in (4.7) makes little contribution; at the other 
extreme, when xt >> 1, the system behaves at first as though undergoing simple relaxa- 
tion,except that the resulting Maxwellian decays with a very long time constant exp(x t2) 

after all other transients have died out. We may note that this behaviour corresponds to 
*e Amhenius law of reaction kinetics, the quantity xt2 representing a reduced 
utiWion energy and reaction proceeding in accordance with the equilibrium hypothesis 

Montroll and Shuler 1958). It is a notable feature of the Rayleigh model, 
however, that the Arrhenius law holds throughout whatever the form of the initial 
condition &, xt, 0). Thus, on integrating equation (4.7) over all x < xt to determine 

totalProPortion C(T) of particles unreacted by time T, we find a cancellation similar 
[Orhat  in case (vi) above with the result 

. ri 

C(T) = ] P(x, xt, T )  dx = exp(-.r e-'+*). 
0 

(4.10) 
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F@e 2. Relaxation of various delta ensembles of Rayleigh test particles in thepresengd 
an absorbing barrier (equation (4.8)). Positions of initial delta function, xo, and absorb@ 
barrier. x', in the four cases are: (a )  xo= 0.0. xt  = 1.0; ( b )  xo = 0.5, x t  = 1.0; ( c )  X O = @ ~ .  

xt.= 1.5; ( d )  x g =  1.0, x t =  1.5. The vertical arrows represent the decay of the &Iu 
function, its probability component scaled to unity by the dot. The column on the nebr 
represents the integrated flux over the barrier, scaled to unity by the horizontal bu,? 
figures give the elapsed time in reduced units. Note the interplay between three eff"4l' 
time scales involving: (i) the decay of the delta function; (ii) relaxation to the Gaussianj(" 
leakage across the barrier. The distributions of unabsorbed test particles are 
Gaussian for 725.0  in cases (a)  to (c) and T? 1.0 in (d) .  

whence 
W 

( T I ) =  TW*(?) d.r= c(7) d7 = e"'* ( = A i 1 ) .  (4.121 

An interesting mathematical concomittant of this simple behaviour is that the dda- 
tion of the discrete eigenvalue Ao(xt )  by first-order perturbation theory-tak@ 
perturbation to be the truncated part of the simple relaxation kernel Kb, Y) for 

x,  y >x'-proves to be exact. This result would appear to depend on the uniqueness d' 
the discrete eigenvalue and seems unlikely to hold for more general models or for the 
complete Rayleigh problem with variable mass ratio. 
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