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Abstract. We derive an exact solution for the evolution of a one-dimensional ensemble of
Rayleigh test particles at unit mass ratio (y = 1) in the presence of a speed absorbing barrier.
The result, which entails an Arrhenius-law dependence of mean first-passage time on
barrier height, appears to be a hitherto unique example of a singular passage-time problem
exactly soluble through a continuous spectrum of eigenvalues and their associated eigen-

distributions.

{, Introduction

howearlier papers in this series (Hoare and Rahman 1973, 1974, to be referred to as I
il respectively) we developed a qualitative treatment of the spectral properties of
& Rayleigh one-dimensional gas and obtained an exact solution of the singular
dgnvalue problem for the relaxation modes in the special case of unit test
prticle/heat bath mass ratio. This led to a simple closed form for the evolution of the
geed distribution function, though the behaviour of the more interesting velocity
@tbution remained very complicated.

Wenow turn to an aspect of the Rayleigh problem which, so far as we are aware, has
wierbeen considered either in this model or in any comparable formulation of particle
tasport theory. This concerns the evolution of a system of Rayleigh test particles in
?mesence of an absorbing barrier representing the physical removal of those particles
:!!Il;h reach some critical threshold in speed or energy. Such a situation seems not
"out practical importance—one can envisage both experimental and astrophysical
mndn.mns under which particles might be removed to some null state by chemical, or
Snceivably nuclear, reaction at a certain activation barrier and thereafter play no

e part in the process. The instantaneous initiation of the process is less easily

ke?r(f)z? but might nevertheless be achieved by sudden irradiation or exposure to a
%’; ;fr)ir;stledgr?ble l.iterature deals with this type of system in the Fnuch simpler case,
kg i : ty to internal degrees of f_reedom, where the interaction with a heat bath
Weiered erms of a mear‘l colllsl_on r!umb’er and the reaction process can be
% Hoare | ;ézns (;)f dlscre.te relaxation times (Montr.oll anq Shuler 1953, Widom

depends , Oppenheim et al 1967). In these §tudles particular attention is paid
) nce of overall rate of reaction (absorption) upon both barrier energy and

Mitia] dictritees . .
1@l distribution of reactant particles, and it is a notable feature of all models so far
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78 M R Hoare and M Rahman

treated that the existence of a characteristic first-order rate constant with exponenty
dependence on barrier height (the Arrhenius law) can only be justified asymptoy;
for limitingly high barrier energy. When, as here, reaction is required to depend ont
translational degree of freedom, the occurrence of singular solutions and a continyyy
distribution of relaxation times rules out the simple treatment previously appjiy
though similar questions to those above remain of interest in the resulting, mo,
complicated, mathematical picture.

The present work appears to be the first to examine these problems—in partioyly
the status of the Arrhenius law—in relation to a singular kinetic process with ab”’?
tion. While the one-dimensional Rayleigh model can hardly be expected to provige
direct predictions relevant to actual reactions, for example in a three-dimensional shog
front, it may nevertheless be offered as an idealized case of exceptional interest whig
can throw light on the mathematics of more realistic systems.

2. The transport equation

For physical and mathematical background to the Rayleigh piston model we referto]
and II. Once again we restrict attention to the special case (y = 1) in which labelledtes
particles collide with a one-dimensional heat bath of particles of identical mass, ax
consider the half-range initial-value problem for the evolution of a speed distributica
function P{|x], 7) given a specified P(|x|, 0). Let there now be introduced an absorfing
barrier at some speed x" such that particles once exceeding this ‘react’ and are removed
from the system. Using the transition probabilities treated earlier (equations (5.5) ad
(5.6) of 1I), the transport equation to be satisfied by a time-dependent distribution
P(|x|, 7) is easily seen to bet

%P(IXI, n=2e7 J max(x, y)P(y, 7) dy - z2(x)P(lx], 7) (O=x<x) (I
[¢]

in which the collision number function z(x) is
z(x)=e ™+ 7' 2x erf(x). (22
Here max(x, y) represents the value of the larger of the two arguments. We recall that
z(0)=1, 2'(x)=n""?erf(x), 2(x)=2e"*.

As we showed previously (II, equation (9.1)) the ‘fundamental’ solution of' [he
unperturbed relaxation problem (x'=o0) corresponding to the initial conditi®
P(x, 0) = 8(x — x,) can be written in the form
P(x,7)=2m""? e + 8(x — xp) e 20" =27 e_"ZJ e 9" dy; >0 03

max(x.xq)
In fact the general solution for arbitrary normalized initial condition P(x,0) can?f
obtained by a similar method, or equally well by superposition of the solutions Q2

¥ Throughout this paper x is the reduced velocity x = (M/2kg T)/2V, where M, T, V are the commof”'s
particle and heat "bath mass, heat bath temperature and test particle velocity respectie
7= no(2kg T/wM)"/*t with n. o test particle number density and collision cross section. We shall drop
modulus notation from |x| in what foliows on the understanding that all expressions refer stricty ©
half-range 0= x < x' with x* <0,
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fieads s y
p=2m e Pl 0) T T ~2re J’ e‘Z(’)’L P(w,0)dw dy

r>0. 2.4)
objective in this paper is to derive a similar expression for ths perturbed
gribution P(x, x', 7) in the presence of an absorbing barrier at speed x'. This mu§rt
adently express the loss of conservation of probability over the finite range (0, x')
gugh a modification of the persistent, Maxwellian term in the above equations.

Qur

1 The eigenvalue problem

Fllowing our previous development of the solution of (2.4) we may expect the
prurbed distribution function P(x, x*, 7) solving equation (2.1) to be expressible as a
ambination of terms of the form

P(x, x", 7)~exp[—-/\(x4’)r—x2]f(x, x",A) (3.1)

stere f(x, x', A) is to be determined by solution of the singular integral equation
[z(x)=AJf(x, x",A) =2 j max(x, y)f(y, x", A) dy. (3.2)
0

Alihough in outline the solution of this may be expected to parallel that for the simple
rlzxation problem, to which it reduces for x" = oo, the presence of the absorbing barrier
tuncating the kernel introduces new boundary conditions which must perturb the
wole eigenvalue spectrum. There are two distinct consequences. First the equilibrium
digenvalue A, = 0 of the simple relaxation operator will be perturbed to a finite value,
tus removing the persistent term in the solution; secondly the restriction of the
agument to the interval 0 < x < x” reduces the previously infinite range of the continu-
o spectrum to the finite region 1<A <z(x") for which the singular factor [z{x)—A]
@ vanish (figure 1). We must also allow for the fact that the presence of the barrier
might induce new discrete lines in the previously empty discretum region 0<A < 1.
_ Asbefore we first examine the possibility of solutions to (3.2) in the region of
d’SCfele eigenvalues 0< A < 1. The general form of these is evidently unchanged by the
:’L’[‘i’t‘im x'# 00 since we may differentiate twice and obtain the singular differential
on
(d*/dx>){[z(x)~AIf(x, xT, A)b =27 f(x, x, A) (3.3)

:Eg‘ia“y as before. We note likewise that the condition z"(x) = 2¢ ™ ensures that one

e on of the above shall be of the form fo=constant, with the corresponding
Walue A to be fixed in terms of x through equation (3.2). A second solution may
Nbe determined as

X dy
R(x, )\) = I —_—
o b [z(y)—AF (3.4)
tat the general solution will take the form of a linear combination
o x', M)y =a(x", A)+b(x" A)JXL |
o lz(y)—-2T” (3:3)
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Figure 1. Eigenvalue spectrum related to barrier height for the Rayleigh scatterny
operator truncated at an absorbing barrier (y = 1). (a) Spectrum for unperturbed relaxatios
(x" = 00); (b) intermediate case; (c) spectrum for limiting region x'« 1. Note how the singe
discrete eigenvalue Ao is perturbed from its zero value by the introduction of the barrie,
while the continuum is reduced to a finite range bounded above at A™=z(x"). T
continuum threshold remains at z(0) and thus the whole continuum and the single discrete
line coalesce at the point A = z(0) as x* -0 (schematic only).

with two constants dependent on the barrier height x". The integral js of course regular
since we have restricted attention to the region 0=< A < 1. One of the constants will later
be fixed by a normalization; to determine the second we substitute (3.5) back into the
original integral equation (3.2) and obtain, after some partial integrations, the conditios

—a(x", M) =a(", M[x2' (N =z(x"] +b(x", 1) [x*z'(x*)R(x*, A)=z(x"R(x,A)

+

s x X
+AR(x', +—-——-———}. 36
(< 4) z(x") = 1-2 64
Inspection shows that this can only be satisfied by forcing
b=0; Ao(x") = 2(x") = x"2'(x") Ky

with the constant a remaining arbitrary. Using now the derivative z'(x) =" erflt)
from (2.2) the single discrete eigenvalue is revealed to be

Aolx) =" (38)

The rest of the discretum must be empty as in the unperturbed relaxation, confirming
that no new eigenvalues are induced by the absorbing barrier.

The continuum region A >1 may now be considered. Following our previows
solution for the unperturbed relaxation (11, equation (4.4)) we may expect the singular
‘eigendistributions’ of the operator in equation (3.2) to be expressible in the form

+ oy [A18[z(x)=A]+B,+ C\R(x, A); O<xysx<x'
flx,x’,A)=
A,+CR(x, A); Osx<x, <x'

where R now stands for the pseudofunction Pf . R(x, A) corresponding to the integr alof
equation (3.4), x, is the root of z(x,)—A =0, and the constants appearing art

functions of A. However, knowing that the present half-range problem requirts
solutions of even symmetry, we may reject the termsin R(x, A) and by substitution bacs

(39
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) establish in addition that B, = 0. At the same time the constants A, and A,

(3.2 na
ol lated by the condition

pove to be r¢!
A(N)= ~Ax(A) e*xi/zr(xx)z- (3.10)

¢ required singular solutions (eigendistributions) can be written in terms of the

th .
Eﬁemaining normalization function A(A)
slz(x)-2)  0<xm <<y (3.11)
oy -3 .
foo X, A)=A@Q)xq__ e O<x=x, <x"

2'(x, )2’

While the quantity x" does not appear explicitly in the function§r on the right we reta}n it
s argument to emphasize that it imposes a domain (0, x') on the new functions
fis,A) in contrast to the domain (0, o) in the simple relaxation case.

The orthogonality of the above functions to the Maxwellian is readily confirmed, as
i the orthogonality with respect to each other:

g ; AP es
X * 7
e xx, A f(x x, A dx =—————8(x —x,). (3.12)
[ e xt s ' 3 ax =S5 o)
Thus we may work with the orthonormal set
f oy ity (€07 (0)7 8[2(x) ~A; 0<x,<x'
#xx’ 0)=e sz{_l; 0<x<n <x' (3.13)

The conditions on the right are, of course, equivalent to the restriction 1A < z(xh).

We can now discern the full nature of the spectrum in the presence of the absorbing
berrier. Since, as x> 0, Ao(x ") = z(0) = 1, we see that the single discrete line approaches
the continuum threshold as the barrier height x' is reduced, while at the same time the
eontinuum itself is compressed into a narrowing region which eventually coalesces with
the discrete line at A = 1 (figure 1). This corresponds to the unrealistic limiting case
vhere only those test particles of virtually zero velocity are considered and these are
rmoved with a single time constant equal to their inverse collision number.

4. The initial-value problem

quany the solution of stochastic problems with absorption is considerably more
gﬁmk than in the case of simple relaxation and we may-have to be content with lesser
momzmon than the full time-dependent distribution function. Weaker alternatives
o seek'the passage-time distribution for absorption, or its moment generating
Nev:rig; ;)r In ‘the simplest resort, Fhe mean first- passage time to the qrbsorbing barrier.
bl ieSS};m our present case, in which th.e absorbmg threshold x fioeg not appear
0y ); )13 the eigenfunctions, it proves possx?le to obtain the full distribution function
) 1tself as well as the reduced quantities.
0 derive this we write a spectral expansion in the form

1

z(x")
Plx, x7, 7) = ag €7 7 ”+e‘2“f a(A)d(x, A)e™ dA @.1)
1
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and, entering the eigenfunctions (3.13) obtain, forr=0

t

Px, x', 0)=ape “+a(x)z'(x)*~2e J a(x,)z'(x)d(x, x,)dx,- (43

Differentiation with respect to x leads to a first-order differential equauon for te
function a(x), for which the integrating factor is seen to be z'(x) exp(x %, and thisintyp
leads to the solution

€

P(x,x",0) 2¢e™™ j R B
: - Ply,x,0)dy+——= 3
2(x)? ) (3 O dy+ 7y 3
with B8 a constant of integration. Substitution back into equation (4.3) exposes the
connection

—x2

alx)=

B=2 J‘ [P(x,x", 0)—aq e ] dx. {44
0

Two conditions now suffice to determine B and a,. We impose the normalization

J P(x,x",0)dx =1 (43)

0

and require that a(A) is identically zero when P(x, x', 0) is the Maxwellian normalizd
on (0, x"). This leads to the combination

B=0; ap=2/2'(x"). (48

We note that equation (4.3) amounts to a constructive proof of the completeness of the
set (3.13) with respect to all functions simply integrable on (0, x7).

The solution of the initial-value problem for any probability distribution P(x,x".0}
may now be composed. Substituting the expression (4.3) for a(A) back into (4.1)
obtain, after some manipulation

~x2

Plx, x',7) = [eXP(‘Te =T+ P(x, 17, 0) €7

2e

z'(x’

2 x 4 - -

-27 e"'J’ e‘Z(”’J P(w, x",0)dw dy. (47
X (]

Results for a variety of special cases follow immediately from this expression. Usisg
as necessary, the limiting values of the collision-number function:

z2(0)=1; z(00) = c0; 2'(0)=0; z'(0)=7'?

we notice the following.
(i) For any initial condition normalizable by (4.5) we have

P(x,x", 1) — P(x,x", 0)

explicitly.
(ii) For long times

P(x, x", ) —0; x<x'<oo.
T
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r limiting low barrier height x"« 1, absorption occurs at first collision and

{ii) For
P(x, x', 7)=P(x, x",0)e7**".
) For limiting high barrier x' 00 the simple relaxation solution (2.4) is re-
covered.
(y) For the ‘fundamental’ initial condition P(x,x',0)=8(x—x,), the solution
reduces to

—x2

23 —x12 —z{xt)r —z(xg)T
P(x,x*,f)=m[exra(—7e )—e 27+ 8(x — xo) €7

—2re™® J e *Wdy (4.8)

max(x.x0)

which in turn gives the result (2.3) when x>0,
(vi) Foran initial Maxwellian distribution at the heat-bath temperature, ie when the
absorbing barrier is instantaneously ‘switched on’, there is cancellation of terms

with the simple result that

—x2
P(x,x", 1) =m exp(—re_"*z). (4.9)

Results computed from equation (4.8) with a number of different initial conditions
and barrier heights are illustrated in figure 2.

The general content of the exact solution (4.7) is readily perceived. Evidently the
sut?set of test particles which have experienced no collision up to time 7 decays as a
Poisson process with time constant z(x) ™", this being the mean waiting time to collision
atspeed x. A complicated transient behaviour accompanies this with test particles
taking up the Maxwellian distribution in competition with passage over the barrier. If
the barrier heightT is very low, the integral in (4.7) makes little contribution; at the other
g’;t;eme, when x'» 1, the_ system behgves at first as though undergoing simple relaxa-
afte;:(lcgtp}: that the. resulting Maxwelhan decays with a very long time constant exp(x )
e Ampe er transients have Fhed out. We may note that thig behaviour corresponds to
i :lus law of reaction kmet'lcs,l the quantity x™ representing a reduced
e g Morrlletrg)l’l and reaction proceedin gin accordance with the equilibrium hypothesis

o, thatr(:h and Shu!er 1958). It is a notable feature of the Rayleigh model,
mnditio;; Pe 1‘eOArrhernus lgw hold§ throughput whatever the form of the initial
tetotalpro, (’;t g ). Thus, on 1_n_tegrat1ng equa-tlor_x (4.7) over all x<x' to determine
o that portion C(r) of particles unreacted by time 7, we find a cancellation similar

In case (vi) above with the result

Clr)= L P(x,x", ) dx =exp(—re™*™). (4.10)

This impli .
2 Plies equally simple behaviour for the distribution of first-passage times to

Iption and j "
ave 1ts mean. Let these quantities be w,(r) and ¢{r,) respectively. Then we

Wi(1)==dC(7)/dr =e*" exp(— 7 e ") (4.11)
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Figure 2. Relaxation of various delta ensembles of Rayleigh test particles in the presenac'd
an absorbing barrier (equation (4.8)). Positions of initial delta function, x, and absorbirg
barrier, x", in the four cases are: (@) =00, x"=1-0; (b) Xg =05, x'=1-0; (c) 7=00.
=15 (@) xo=10, x"=1-5. The vertical arrows represent the decay of the df?lﬂ
function, its probability component scaled to unity by the dot. The column on the righ
represents the integrated flux over the barrier, scaled to unity by the horizontal bar.T.bt
figures give the elapsed time in reduced units. Note the interplay between three eﬁew‘*
time scales involving: (i) the decay of the delta function; (ii) relaxation to the Gaussmn.:(ml
leakage across the barrier. The distributions of unabsorbed test particles are effectively
Gaussian for 7= 5-0 in cases {(a) to (¢) and 7= 1-0 in (d).

whence

<r,>=j Twy(7) dr= j Clr)dr=e"" (=43, (1
0 (4]

An interesting mathematical concomittant of this simple behaviour is that the cfllﬂﬂa‘
tion of the discrete eigenvalue A,(x") by first-order perturbation theory—taking
perturbation to be the truncated part of the simple relaxation kernel K{(x. yfor
x, y > x'—proves to be exact. This result would appear to depend on the uniquenés
the discrete eigenvalue and seems unlikely to hold for more general models or for
complete Rayleigh problem with variable mass ratio.
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